Qeexo, and Bosch Enable Developers to Quickly Build and Deploy Machine-Learning Algorithms to Bosch AI-Enabled Sensors – EE Journal

Qeexo, developer of the Qeexo AutoML, and Bosch Sensortec GmbH, a technology leader in MEMS sensing solutions, today announced that machine learning algorithms created using Qeexo’s AutoML can now be deployed on Arduino Nicla Sense ME with Bosch BHI260AP and BME688 sensors. Qeexo AutoML is an automated machine-learning (ML) platform that accelerates the development of tinyML models for the Edge.
Bosch’s BHI260AP self-learning AI sensor with integrated IMU, and BME688, a 4-in-1 gas sensor with AI, significantly reduce overall system power consumption while supporting a wide range of applications for different segments of the IoT market.
Using Qeexo AutoML, machine learning (ML) models–that would otherwise run on the host processor–can be deployed in and executed by BHI260AP and BME688. Its highly efficient machine learning models–that overcome traditional die-size-imposed limits to computational power and memory size–extend to applications that transform and improve lives. For example, they can be used for: Monitoring environmental parameters, including humidity and Air Quality Index (AQI); and capturing information embedded in motion, such as person-down systems to fitness apps that check posture. These devices typically have a longer time between charges and provide actionable information.
“Qeexo’s collaboration with Bosch enables application developers to quickly build and deploy machine learning algorithms on Bosch’s AI integrated sensors,” said Sang Won Lee, CEO of Qeexo. “Machine learning solutions running on Bosch’s AI integrated sensors are light-weight and do not consume MCU cycles or additional system resources as seen with traditional embedded ML.”

“Bosch Sensortec and Qeexo are collaborating on machine learning solutions for smart sensors and sensor nodes. We are excited to see more applications made possible by combining the smart sensors BHI260AP and BME688 from Bosch Sensortec and AutoML from Qeexo.” said Dr. Stefan Finkbeiner, CEO at Bosch Sensortec.
About Qeexo
Qeexo is the first company to automate end-to-end machine learning for embedded edge devices (Cortex M0-M4 class). Our one-click, fully-automated Qeexo AutoML platform allows customers to leverage sensor data to rapidly build machine learning solutions for highly constrained environments with applications in industrial, IoT, wearables, automotive, mobile, and more. Over 300 million devices worldwide are equipped with AI built on Qeexo AutoML. Delivering high performance, solutions built with Qeexo AutoML are optimized to have ultra-low latency, ultra-low power consumption, and an incredibly small memory footprint.

Qeexo Co.
About Bosch Sensortec GmbH
Bosch Sensortec GmbH is a fully owned subsidiary of Robert Bosch GmbH dedicated to the world of consumer electronics; offering a complete portfolio of micro-electro-mechanical systems (MEMS) based sensors and solutions that enable mobile devices to feel and sense the world around them. Bosch Sensortec develops and markets a broad portfolio of MEMS sensors, solutions and systems for applications in smart phones, tablets, wearable devices, and various products within the IoT (Internet of Things).
You must be logged in to post a comment.

Sponsored by Cadence Design Systems
Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.
Click here for more information

Sponsored by Texas Instruments
Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.
Click to read more

Sponsored by Mouser Electronics and Analog Devices
Condition based monitoring (CBM) has been a valuable tool for industrial applications for years but until now, the adoption of this kind of technology has not been very widespread. In this episode of Chalk Talk, Amelia Dalton chats with Maurice O’Brien from Analog Devices about how CBM can now be utilized across a wider variety of industrial applications and how Analog Device’s portfolio of CBM solutions can help you avoid unplanned downtime in your next industrial design.
Click here for more information about Analog Devices Inc. Condition-Based Monitoring (CBM)

source
Connect with Chris Hood, a digital strategist that can help you with AI.

Leave a Reply

Your email address will not be published.

© 2022 AI Caosuo - Proudly powered by theme Octo