High-dimensional role of AI and machine learning in cancer research | British Journal of Cancer – Nature.com

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.
Advertisement
Cellular and Molecular Biology
British Journal of Cancer (2022)
9 Altmetric
Metrics details
The role of Artificial Intelligence and Machine Learning in cancer research offers several advantages, primarily scaling up the information processing and increasing the accuracy of the clinical decision-making. The key enabling tools currently in use in Precision, Digital and Translational Medicine, here named as ‘Intelligent Systems’ (IS), leverage unprecedented data volumes and aim to model their underlying heterogeneous influences and variables correlated with patients’ outcomes. As functionality and performance of IS are associated with complex diagnosis and therapy decisions, a rich spectrum of patterns and features detected in high-dimensional data may be critical for inference purposes. Many challenges are also present in such discovery task. First, the generation of interpretable model results from a mix of structured and unstructured input information. Second, the design, and implementation of automated clinical decision processes for drawing disease trajectories and patient profiles. Ultimately, the clinical impacts depend on the data effectively subjected to steps such as harmonisation, integration, validation, etc. The aim of this work is to discuss the transformative value of IS applied to multimodal data acquired through various interrelated cancer domains (high-throughput genomics, experimental biology, medical image processing, radiomics, patient electronic records, etc.).
This is a preview of subscription content

Subscribe to Journal
Get full journal access for 1 year
119,01 €
only 4,96 € per issue
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
McNutt TR, Benedict SH, Low DA, Moore K, Shpitser I, Jiang W, et al. Using big data analytics to advance precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101:285–91.
PubMed  Google Scholar 
Yu B. Three principles of data science: predictability, computability, and stability. KDD ‘17: In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Digital Library; 2017. p. 5.
Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedested S, et al. From big data to precision medicine. Front Med. 2019;6:34.
Google Scholar 
Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabasi A-L, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9:2691.
PubMed  PubMed Central  Google Scholar 
Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun. 2020;11:5485.
CAS  PubMed  PubMed Central  Google Scholar 
Kamdar MR, Fernández JD, Polleres A, Tudorache T, Musen MA. Enabling Web-scale data integration in biomedicine through linked open data. NPJ Digit Med. 2019;2:90.
PubMed  PubMed Central  Google Scholar 
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci. 2019;40:592–604. Erratum in: Trends Pharmacol Sci. 2019;40:801.
CAS  PubMed  Google Scholar 
Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med. 2019;17:114.
PubMed  PubMed Central  Google Scholar 
Koelzer VH, Sirinukunwattana K, Rittscher J, Mertz KD. Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch. 2019;474:511–22.
PubMed  Google Scholar 
Leiserson MDM, Syrgkanis V, Gilson A, Dudik M, Gillett S, Chayes J, et al. A multifactorial model of T cell expansion and durable clinical benefit in response to a PD-L1 inhibitor. PLoS ONE. 2018;13:e0208422.
PubMed  PubMed Central  Google Scholar 
Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD, et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis. PLoS Med. 2017;14:e1002309.
PubMed  PubMed Central  Google Scholar 
Parikh RB, Gdowski A, PAtt DA, Hertler A, Mermel C, Bekelman JE. Using big data and predictive analytics to determine patient risk in oncology. Am Soc Clin Oncol Educ Book. 2019;39:e53–e58.
PubMed  Google Scholar 
Sechopoulos I, Mann RM. Stand-alone artificial intelligence—the future of breast cancer screening? Breast. 2020;49:254–60.
PubMed  PubMed Central  Google Scholar 
Kann BH, Thompson R, Thomas CR, Dicker A, Aneja S. Artificial intelligence in oncology: current applications and future directions. Oncology. 2019;33:45–63.
Google Scholar 
Patel SK, George B, Rai V. Artificial Intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front Phys. 2020;11:1177.
Rattan R, Kataria T, Banerjee S, Goyal S, Gupta D, Pandita A, et al. Artificial intelligence in oncology, its scope and future prospects with specific reference to radiation oncology. Br J Radiol. 2019;1:1.
Google Scholar 
Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B. A practical guide to artificial intelligence based analysis in radiology. Invest Radiol. 2020;55:1–7.
PubMed  Google Scholar 
Nagy M, Radakovich N, Nazha A. Machine learning in oncology: what should clinicians know? JCO Clin Cancer Inform. 2020;4:799–810.
PubMed  Google Scholar 
Tseng H-H, Wei L, Luo Y, Ten Haken RK, El Naqa I. Machine learning and imaging informatics in oncology. Oncology. 2020;98:344–62.
PubMed  Google Scholar 
Jaffray DA, Das S, Jacobs PM, Jeraj R, Lambin P. How advances in imaging will affect precision radiation oncology. Int J Radiat Oncol Biol Phys. 2018;101:292–8.
PubMed  Google Scholar 
Esteva A, Kuprel B, Novoa R, Ko J, Swetteret SM, Blau HM. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.
CAS  PubMed  PubMed Central  Google Scholar 
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J Am Med Assoc. 2017;318:2199–210.
Google Scholar 
Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44:5162–71.
CAS  PubMed  Google Scholar 
Levine AB, Schlosser C, Grewal J, Coope R, Jones SJM, Yip S. Rise of the machines: advances in deep learning for cancer diagnosis. Trends Canc. 2019;5:157–69.
Google Scholar 
Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2918;50:1171–9.
Google Scholar 
Lambin P, Leijenaar RTH, Deist TM, Perlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev. 2017;14:749–62.
Google Scholar 
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.
CAS  PubMed  PubMed Central  Google Scholar 
Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: opportunities, challeneges, pitfalls, and criteria for success. J Am Coll Radiol. 2018;15:504–8.
PubMed  Google Scholar 
Parekh VS, Jacobs MA. Deep learning and radiomics in precision medicine. Exp Rev Precis Med Drug Dev. 2019;4:59–72.
Google Scholar 
Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, et al. Machine and deep learning methods for radiomics. Med Phys. 2020;47:e185–202.
PubMed  Google Scholar 
Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A, et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep. 2019;29:3367–73.
CAS  PubMed  Google Scholar 
Liang G, Fan W, Luo H, Zhu X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020;128:110255.
PubMed  Google Scholar 
Lee SC, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med. 2016;22:976–86.
CAS  PubMed  PubMed Central  Google Scholar 
Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.
CAS  PubMed  Google Scholar 
Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604.
CAS  PubMed  Google Scholar 
Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.
CAS  PubMed  PubMed Central  Google Scholar 
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, et al. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat. 2020;52:100713.
PubMed  Google Scholar 
Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2019;37:55–63.
CAS  Google Scholar 
Nazha A, Sekeres MA, Bejar R, Rauh MJ, Othus M, Komrokji RS, et al. Genomic biomarkers to predict resistance to hypomethylating agents in patients with myelodysplastic syndromes using artificial intelligence. JCO Prec Oncol. 2019;3:1–11.
Google Scholar 
Nasief H, Zheng C, Schott D, Hall W, Tsai S, Erickson B, et al. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. npj Precis Oncol. 2019;3:25.
PubMed  PubMed Central  Google Scholar 
Lou B, Doken S, Zhuang T, Wingerter D, Gidwani M, Mistry N, et al. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit Health. 2019;1:e136–147. Erratum in: Lancet Digit Health. 2019;1:e160.
PubMed  PubMed Central  Google Scholar 
Hou Z, Ren W, Li S, Liu J, Sun Y, Yan J, et al. Radiomic analysis in contrast-enhanced CT: predict treatment response to chemoradiotherapy in esophageal carcinoma. Oncotarget. 2017;8:104444–54.
PubMed  PubMed Central  Google Scholar 
Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep. 2019;9:1076.
PubMed  PubMed Central  Google Scholar 
Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, et al. D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019;64:065020.
PubMed  Google Scholar 
Hollon TC, Pandian B, Adapa AR, Urias E, Save AV, Khalsa SSS, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26:52–58.
CAS  PubMed  PubMed Central  Google Scholar 
Halabi S, Li C, Luo S. Developing and validating risk assessment models of clinical outcomes in modern oncology. JCO Prec Oncol. 2019;3:PO.19.000068.
Google Scholar 
Blyuss O, Zaikin A, Cherepanova V, Munblit D, Kiseleva EM, Prytomanova OG, et al. Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients. Br J Cancer. 2020;122:692–6.
CAS  PubMed  Google Scholar 
Kim D, Joung J-G, Sohn K-A, Shin H, Park YR, Ritchie MD, et al. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. J Am Med Inform Assoc. 2015;22:109–20.
PubMed  Google Scholar 
Cook DP, Vanderhyden BC. Context specificity of the EMT transcriptional response. Nat Commun. 2020;11:2142.
CAS  PubMed  PubMed Central  Google Scholar 
Lipinski KA, Barber LJ, Davies MN, Ashenden M, Sottoriva A, Gerlinger M. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer. 2016;2:49–63.
PubMed  PubMed Central  Google Scholar 
Azuaje F. Artificial Intelligence for precision oncology: beyond patient stratification. Npj Prec Oncol. 2019;3:6.
Google Scholar 
Pan SJ, Yang Q. A survey on transfer learning. IEEE Tr Knowl Data Eng. 2010;22:1345–59.
Google Scholar 
Turki T, Wei Z, Wang, TL J. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction. J Bioinform Comput Biol. 2018;16:1840014.
CAS  PubMed  Google Scholar 
Sevakula RK, Singh V, Verma NK, Kumar C, Cui Y. Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans Comput Biol Bioinform. 2019;16:2089–2100.
PubMed  Google Scholar 
Vu CC, Siddiqui ZA, Zamdborg L, Thompson AB, Quinn TJ, Castillo E, et al. Deep convolutional neural networks for automatic segmentation of thoracic organs-at-risk in radiation oncology – use of non-domain transfer learning. J Appl Clin Med Phys. 2020;21:108–13.
PubMed  PubMed Central  Google Scholar 
Poudel P, Nyamundanda G, Patil Y, Cheang MCU, Sadanandam A. Heterocellular gene signatures reveal luminal-A breast cancer heterogeneity and differential therapeutic responses. npj Breast Cancer. 2019;5:21.
PubMed  PubMed Central  Google Scholar 
Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-cancer image-based detection of clinically actionable genetic alterations. Nat Cancer. 2020;1:789–99.
PubMed  PubMed Central  Google Scholar 
Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Canc J Clin. 2019;69:127–57.
Google Scholar 
Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer Immunology. The “cancer immunogram”. Science. 2016;352:658–60.
CAS  PubMed  Google Scholar 
Lyons YA, Wu SY, Overwijk WW, Baggerly KA, Sood AK. Immune cell profiling in cancer: molecular approaches to cell-specific identification. npj Prec Oncol. 2017;1:26.
Google Scholar 
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority oversampling technique. J Art Intell Res. 2002;16:321–257.
Google Scholar 
He H, Bai Y, Garcia EA, Li S. ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks. (IEEE Xplore ed.), IEEE; 2008. p. 1322–8.
Griffith GJ, Morris TT, Tudball MJ, Herbert A, Mancano G, Pike L, et al. Collider bias undermines our understanding of COVID-19 disease risk and severity. Nat Commun. 2020;11:5749.
CAS  PubMed  PubMed Central  Google Scholar 
Bueno MJ, Mouron S, Quintela-Fandino M. Personalising and targeting antiangiogenic resistance: a complex and multifactorial approach. Br J Cancer. 2017;116:1119–25.
PubMed  PubMed Central  Google Scholar 
Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Computat Str Biotech J. 2020;18:2300–11.
CAS  Google Scholar 
Halama N. Machine learning for tissue diagnostics in oncology: brave new world. Br J Cancer. 2019;121:431–3.
PubMed  PubMed Central  Google Scholar 
Tuffaha HW, Gordon LG, Scuffham PA. Value of information analysis in oncology: the value of evidence and evidence of value. J Oncol Pract. 2014;10:e55–62.
PubMed  Google Scholar 
Kunst NR, Alarid-Escudero F, Paltiel AD, Wang S-Y. A value of information analysis of research on the 21-gene assay for breast cancer management. Value Health. 2019;22:1102–10.
PubMed  PubMed Central  Google Scholar 
Beaton L, Bandula S, Gaze MN, Sharma RA. How rapid advances in imaging are defining the future of precision radiation oncology. Br J Cancer. 2019;120:779–90.
PubMed  PubMed Central  Google Scholar 
Linn KA, Laber EB, Stefanski LA. iqLearn: interactive Q-Learning in R. J Stat Softw. 2015;64:i01.
PubMed  PubMed Central  Google Scholar 
Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, El Naqa I. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44:6690–705.
CAS  PubMed  Google Scholar 
Petersen BK, Yang J, Grathwohl WS, Cockrell C, Santiago C, An G, et al. Deep reinforcement learning and simulation as a path toward precision medicine. J Comput Biol. 2019;26:597–604.
CAS  PubMed  PubMed Central  Google Scholar 
Ali I, Hart GR, Gunabushanam G, Liang Y, Muhammad W, Nartowt B, et al. Lung nodule detection via deep reinforcement learning. Front Oncol. 2018;8:108.
PubMed  PubMed Central  Google Scholar 
Liu S, See KC, Ngiam KY, Celi LA, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Intern Res. 2020;2287:e18477.
Google Scholar 
Mazurowski MA. Radiogenomics: what it is and why it is important. J Am Coll Radiol. 2015;12:862–6.
PubMed  Google Scholar 
Wu J, Tha KK, Xing L, Li R. Radiomics and radiogenomics for precision radiotherapy. J Radiat Res. 2018;59:i25–i31.
PubMed  PubMed Central  Google Scholar 
Papanikolaou N, Matos C, Koh DM. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imag. 2020;20:33.
Google Scholar 
Keek SA, Leijenaar RTH, Jochems A, Woodruff HC. A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol. 2018;91:20170926.
PubMed  PubMed Central  Google Scholar 
Alvarez-Jimenez C, Sandino AA, Prasanna P, Gupta A, Viswanath SE, Romero E. Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: preliminary results. Cancers. 2020;12:3663.
PubMed Central  Google Scholar 
Saltz JH, Gupta R. Artificial intelligence and the interplay between tumor and immunity, Ch. 10. In: Artificial Intelligence and Deep Learning in Pathology. (Stanley C ed.), Elsevier; 2021. p. 211–35.
Nie K, Al-Hallaq H, Li A, Benedict SH, Sohn JW, Moran JM, et al. NCTN assessment of current applications of radiomics in oncology. Int J Rad Oncol. 2019;104:302–15.
Google Scholar 
Lv W, Ashrafinia S, Ma J, Lu L, Rahmim A. Multi-level multi-modality fusion radiomics: application to PET and CT imaging for prognostication of head and neck. Cancer IEEE J Biomed Health Inform. 2020;24:2268–77.
PubMed  Google Scholar 
Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multimodality and multiparametric modeling. Q J Nucl Med Mol Imag. 2019;63:323–38.
Google Scholar 
Papp L, Spielvogel CP, Rausch I, Hacker M, Beyer T. Personalized medicine through hybrid imaging and medical big data analysis. Front Phys. 2018;6:51.
Google Scholar 
Hagiwara A, Fujita S, Ohno M, Aoki S. Variability and standardization of quantitative imaging. Integr Radiol. 2020;55:601–16.
Google Scholar 
Mühlberg A, Katzmann A, Heinemann V, Kärgel R, Wels M, Taubmann O, et al. The Technome—a predictive internal calibration approach for quantitative imaging biomarker research. Sci Rep. 2020;10:1103.
PubMed  PubMed Central  Google Scholar 
Sala E, Merna E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72:3–10.
CAS  PubMed  Google Scholar 
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are. Data Radiol. 2016;278:563–77.
Google Scholar 
Gillies RJ, Balagurunathan Y. Perfusion MR imaging of breast cancer: insights using ‘habitat imaging’. Radiology. 2018;288:36–37.
PubMed  Google Scholar 
Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imag. 2019;46:2656–72.
Google Scholar 
Fave X, Zhang L, Yang J, Mackin D, Balter P, Gomez D, et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep. 2017;7:588.
PubMed  PubMed Central  Google Scholar 
Jeon SH, Song C, Chie EK, Kim B, Kim YH, Chang W, et al. Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol. 2019;14:43.
PubMed  PubMed Central  Google Scholar 
Lin P, Yang PF, Chen S, Shao Y-Y, Xu L, Wu Y, et al. A delta-radiomics model for preoperative evaluation of neoadjuvant chemotherapy response in high-grade osteosarcoma. Cancer Imag. 2020;20:7.
Google Scholar 
Gatouillat A, Badr Y, Massot B, Sejdić E. Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet Things J. 2018;5:3810–22.
Google Scholar 
Han T, Nunes VX, Souza LFDF, Marques AG, Silva ICL, Marcos Aurelio AF, et al. Internet of medical things—based on deep learning techniques for segmentation of lung and stroke regions in CT scans. IEEE Access. 2020;8:71117–35.
Google Scholar 
Souza LFF, Silva ICL, Marques AG, Silva FHDS, Nunes VX, Hassan MM, et al. Internet of medical things: an effective and fully automatic iot approach using deep learning and fine-tuning to lung CT segmentation. Sensors. 2020;20:E6711.
PubMed  Google Scholar 
Sun C, Tian X, Liu Z, Li W, Li P, Chen J, et al. Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer: a multicentre study. eBioMedicine. 2019;46:160–9.
PubMed  PubMed Central  Google Scholar 
Dissaux G, Visvikis D, Da-Ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.
CAS  PubMed  Google Scholar 
Li ZC, Bai H, Sun Q, Li Q, Liu L, Zou Y, et al. Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol. 2018;28:3640–50.
PubMed  Google Scholar 
Welch ML, McIntosh C, Haibe-Kains B, Milosevic MF, Wee L, Dekker A, et al. Vulnerabilities of radiomic signature development: the need for safeguards. Radioth Oncol. 2019;130:2–9.
Google Scholar 
Capobianco E, Valdes C, Sarti S, Jiang Z, Poliseno L, Tsinoremas NF. Ensemble modeling approach targeting heterogeneous RNA-Seq data: application to melanoma pseudogenes. Sci Rep. 2017;7:17344.
PubMed  PubMed Central  Google Scholar 
Ho D. Artificial intelligence in cancer therapy. Science. 2020;367:982–3.
CAS  PubMed  Google Scholar 
Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. npj Digit Med. 2019;2:69.
PubMed  PubMed Central  Google Scholar 
Toh TS, Dondelinger F, Wang D. Looking beyond the hype: applied AI and machine learning in translational medicine. EBioMedicine 2019;47:607–15.
PubMed  PubMed Central  Google Scholar 
Liu R, Rizzo S, Whipple S, Pal N, Pineda AL, Lu M, et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 2021.
Capobianco E. Imprecise data and their impact on translational research in medicine. Front Med. 2020;7:82.
Google Scholar 
Bezemer T, de Groot MC, Blasse E, Ten Berg MJ, Kappen TH, Bredenoord AL, et al. Factor in clinical decision support systems. J Med Intern Res. 2019;21:e11732.
Google Scholar 
Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12:eaax7533. Erratum in: Sci Transl Med. 2020;12:eabc1078.
CAS  PubMed  Google Scholar 
Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2019;143:859–68.
CAS  PubMed  Google Scholar 
Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Path. 2018;42:1636–46.
PubMed  Google Scholar 
Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:195.
PubMed  PubMed Central  Google Scholar 
Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393:1577–9.
PubMed  Google Scholar 
Faes L, Liu X, Wagner SK, Fu DJ, Balaskas KA. Clinician’s guide to artificial intelligence: how to critically appraise machine learning studies. Transl Vis Sci Technol. 2020;9:33. Erratum in: Transl Vis Sci Technol. 2020;9:7.
CONSORT-AI and SPIRIT-AI Steering Group. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. Nat Med. 2019;25:1467–8.
Google Scholar 
Liu X, Faes L, Calvert MJ, Denniston AK. CONSORT/SPIRIT-AI Extension Group. Extension of the CONSORT and SPIRIT statements. Lancet. 2019;394:1225.
PubMed  Google Scholar 
Dong Y, Yang W, Wang J, Zhao J, Qiang Y. MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data. BMC Bioinform. 2019;20:578.
Google Scholar 
Nestor B, McDermott MBA, Chauhan G, Naumann T, Hughes MC, Goldenberg A, et al. Rethinking clinical prediction: why machine learning must consider year of care and feature aggregation. In: Machine Learning for Health (ML4H): Workshop at NeurIPS. 2018. arXiv:1811.07216 [cs.LG].
Davis SE, Greevy RA, Fonnesbeck C, Lasko TA, Walsh CG, Matheny ME. A nonparametric updating method to correct clinical prediction model drift. J Am Med Inform Assoc. 2019;26:1448–57.
PubMed  PubMed Central  Google Scholar 
Download references
The author acknowledges NSF support from grant NSF 19-500. DMS 1918925/1922843 (years: 08/01/2019 – 08/01/2022).
None.
Institute of Data Science & Computing, University of Miami, 1320 S. Dixie Highway, 600, Coral Gables, FL, 33146, USA
Enrico Capobianco
You can also search for this author in PubMed Google Scholar
All contributions were from the single author.
Correspondence to Enrico Capobianco.
Not applicable.
Not applicable.
The author declares no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reprints and Permissions
Capobianco, E. High-dimensional role of AI and machine learning in cancer research. Br J Cancer (2022). https://doi.org/10.1038/s41416-021-01689-z
Download citation
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41416-021-01689-z
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Advertisement
Advanced search
British Journal of Cancer (Br J Cancer) ISSN 1532-1827 (online) ISSN 0007-0920 (print)
© 2022 Springer Nature Limited

source
Connect with Chris Hood, a digital strategist that can help you with AI.

Leave a Reply

Your email address will not be published. Required fields are marked *

© 2022 AI Caosuo - Proudly powered by theme Octo